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Abstract

Valuing time series datasets effectively is crucial for enhancing machine learning
models by selecting high-quality data that improves model performance. In this
paper, we propose a task-agnostic method for time series dataset valuation based on
a combination of local and global diversity measures. We first represent time series
as natural visibility graphs, transforming the data into a graph-based format. We
then compute local diversity through Weisfeiler-Lehman graph embeddings and
global diversity using the Gaussian Radial Basis Function (RBF) kernel, capturing
both local and global structure in the time series data. Our proposed true diversity
score, a convex combination of local and global diversity, provides a metric to
quantify the intrinsic variability of time series datasets. Additionally, we introduce
a relevance metric based on spectral graph entropy and Jensen-Shannon divergence,
which measures the similarity between time series datasets. This work contributes
to the growing field of data-centric AI by providing tools to assess the value of
time series data in a task-agnostic manner, facilitating better decision-making in
data selection for machine learning tasks.

1 Introduction

The rapid usage of time series data across domains such as finance, healthcare, climate science, and
industrial monitoring has increased the need for machine learning models that can effectively learn
from and interpret temporal patterns. However, not all time series datasets contribute equally to model
performance. As machine learning transitions from a model-centric paradigm — where performance
improvements primarily come from better algorithms — to a data-centric approach, the importance
of data valuation has become paramount. Data-centric AI focuses on improving model outcomes by
carefully curating and selecting high-quality datasets, making the ability to quantify the value of data
a critical challenge.

Data valuation is the process of determining the worth of a dataset based on its ability to improve
model performance, either by enhancing generalization or providing complementary information.
While task-specific data valuation approaches have received significant attention, there is growing
interest in task-agnostic methods — those that can evaluate datasets without depending on the final
task or model. This task-agnostic approach is particularly important for time series data, which often
exhibit complex temporal dependencies, seasonality, trends, and noise. Existing valuation methods
for static datasets often fail to capture these nuances, making them insufficient for time series.

In this paper, we propose a novel task-agnostic framework for time series dataset valuation, focusing
on two key factors: diversity and relevance. These complementary aspects offer a comprehensive
way to evaluate the quality and utility of datasets, independent of any specific task.
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1.1 Diversity

Diversity refers to the range of distinct patterns, behaviors, and structures present within a dataset.
A diverse dataset ensures that a machine learning model is exposed to a variety of scenarios, which
helps improve generalization, robustness, and adaptability to unseen data. For time series, diversity
includes temporal patterns such as trends, seasonality, cyclic behaviors, and fluctuations over time.
Diverse datasets enable models to learn more effectively, covering a wider spectrum of possible
real-world behaviors.

To quantify diversity in time series datasets, we represent the time series as natural visibility graphs
(NVG), converting the temporal data into graph structures. We introduce two types of diversity
measures:

• Local Diversity: This measure captures fine-grained, short-term variations in the time series
by evaluating the differences between small windows of data using graph embeddings. By
applying the Weisfeiler-Lehman graph kernel, we assess the differences in the structure of
local graphs, which correspond to short-term fluctuations in the time series.

• Global Diversity: This measure captures long-term, overarching trends in the time series
by comparing the entire dataset. Using the Gaussian Radial Basis Function (RBF) kernel,
global diversity captures broad patterns, seasonality, and long-range dependencies.

These two measures are combined to form a True Diversity score, which balances short-term variabil-
ity and long-term structural patterns. This holistic view of diversity ensures that a dataset contains
sufficient variety to enrich a machine learning model’s training process, ultimately leading to better
performance across different tasks.

1.2 Relevance

While diversity captures the richness of a dataset, relevance measures how well a dataset aligns with
other datasets or complements existing data. In the context of time series valuation, relevance is
critical for understanding whether a new dataset offers additional value when combined with already
available data. Relevance is particularly important in scenarios such as data marketplaces or iterative
model development, where users seek to augment their existing data with complementary datasets.

Our proposed relevance metric is based on the spectral properties of graph representations of time
series data. By analyzing the spectral entropy of the graphs generated using the NVG algorithm,
we capture the complexity of the dataset. We then use Jensen-Shannon divergence to compare the
spectral densities of two datasets, quantifying the structural differences between them. This approach
provides a task-agnostic metric for determining whether new data will add value to a model’s training
set, independent of the specific task.

Relevance helps answer two key questions in data valuation:

• Complementarity: Does a new dataset introduce novel information that complements
existing data, potentially improving model performance?

• Redundancy: Is the new dataset too similar to the existing one, offering little additional
value and increasing the risk of overfitting?

By combining these perspectives on diversity and relevance, our framework provides a robust
mechanism for task-agnostic time series dataset valuation. Diversity ensures that datasets are varied
and comprehensive, while relevance helps identify whether new data offers meaningful contributions
when added to existing datasets.

In this paper, we make the following key contributions:

• We propose a novel task-agnostic framework for time series dataset valuation based on
natural visibility graphs (NVG), offering a graph-based representation that preserves both
local and global temporal structures.

• We introduce True Diversity, a combination of local and global diversity measures, which
quantifies the variability in time series datasets by capturing both short-term and long-term
patterns.
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• We define a Relevance metric grounded in graph spectral entropy and Jensen-Shannon
divergence, enabling task-agnostic assessment of how well datasets complement each other.

• We validate our approach through experiments on synthetic and real-world time series
datasets, demonstrating that our diversity and relevance metrics effectively guide data
selection, resulting in improved model generalization and performance.

This work advances the field of data-centric AI by providing a practical, task-agnostic methodology
for assessing the value of time series datasets. Our framework facilitates better decision-making
in data selection, paving the way for more efficient and effective use of temporal data in machine
learning applications.

2 Preliminary

Graph representation: Let a graph G be defined as G = (V, E) where V = {v1, . . . , vNV} is the set
of nodes, with cardinality |V| = NV . N (vi) denotes the set of neighboring nodes of vi, and w(vi, vj)
represents the weight of the edge between nodes vi and vj . G can be represented by an adjacency
matrix A ∈ {0, 1}NV×NV , with Aij = 1 if nodes vi and vj are connected and Aij = 0 otherwise.

Random graph: Random graph can be defined as a probability space (Ω,F , P ), where the sample
space Ω is a nonempty set of graphs. The set of events F is a collection of subsets of Ω, encompassing
the power set of Ω, thus including every possible combination of these graphs. The probability
measure P assigns a probability to each event in F , quantifying the likelihood of each subset of
graphs occurring.

Spectral properties of random graph: Given a set of NV labeled nodes V = {v1, . . . , vNV}, let
g be a random graph such that its sample space Ω consists of graphs with labnodes {v1, . . . , vNV}.
We define the spectrum of g as a random vector containing NV random variables λ1, λ2, . . . , λNV .
Each function λi : Ω → R maps a graph in the sample space Ω to the i-th largest eigenvalue of its
adjacency matrix.

Let δ be the Dirac delta function, which is the probability measure satisfying

• δ(x) = 0, x ∈ R \ {0},

• δ(0) = ∞,

•
∫ +∞
−∞ δ(x) dx = 1.

Let G be a graph in the sample space of g. The empirical spectral density according to the probability
law of g [5] is given by:

ρ(λ) = lim
nV→∞

〈
1

NV

NV∑
i=1

δ

(
λ− λi√

NV

)〉
.

3 Graphical Representation of Time Series

Let T = {t1, t2, . . . , tN} represent a time series consisting of N data points, where ti denotes the
data value at time index i. We partition T into N overlapping windows, each of size M , forming a
new set of windows Tg as follows:

Tg = {(t1, t2, . . . , tM mod N ) , (t2, t3, . . . , tM+1 mod N ) , . . . , (tN , t1, . . . , tM−1 mod N )}

Here, each window contains M consecutive data points from the original series T , with modular
arithmetic ensuring that the windows wrap around at the boundary of the time series, making Tg a
cyclic or periodic transformation of the original series.

The natural visibility algorithm [3] creates N graphs based on each set Tgi ∈ Tg and assigns each
data point ti ∈ Tgk of the window k to a node in the natural visibility graph (NVg). Two nodes i and
j in the graph are connected with weight w(i, j) = |ti − tj | if one can draw a straight line in the
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Figure 1: Natural Visibility algorithm

window joining ti and tj that does not intersect any intermediate data height tk. Hence, i and j are
two connected nodes if the following geometrical criterion is fulfilled within the window:

tk < ti + (tj − ti)
j − i

k − i
. (1)

Therefore, the result of the NVg would be a set of graphs G = {Gi = (Vi, Ei)}i=1,...,N such that
|Vi| = M . The graphs extracted with NVg has the following characteristics:

1. Connected: Each node is capable of observing at least its nearest neighbors on both the left
and right sides.

2. Undirected: The algorithm is constructed such that the links have no inherent directionality.

3. Invariant under affine transformations: The visibility criterion remains unchanged un-
der (unsigned) linear rescaling of both the horizontal and vertical axes, as well as under
horizontal and vertical translations of the series data.

The NVg algorithm is inherently "lossy," meaning that some information from the time series is
inevitably lost during the transformation to graphs. We have identified the following key character-
istics that are essential for evaluating time series datasets, along with those that are lost during the
NVg transformation: (i) Trend, (ii) Seasonality, (iii) Cyclic Patterns, (iv) Stationarity, (v) Noise, and
(vi) Volatility. As demonstrated in Table ?? and Appendix ??, NVg performs well in preserving the
information related to the first five characteristics. However, it may suffer from information loss
concerning volatility.

Remark: The choice of M significantly affects the amount of information lost in the NVg. Addi-
tionally, large values of M can make the computation costly. Therefore, an appropriate value for M
should be determined based on the experimental results.

4 Diversity

Diversity in data valuation is crucial for enhancing the performance and reliability of machine learning
models. Diverse datasets ensure that models are trained on a wide range of scenarios, leading to better
generalization and robustness. In the context of machine learning, diversity helps in capturing the
complete structure of the underlying data distribution. Diversity is vital in time series data valuation
for several reasons, as it enhances the robustness, accuracy, and generalization capability of models
used for forecasting and analysis.
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In order to capture the diversity of a time series data we use an approach inspired by Vendi score
[1]. The Vendi Score is based on the exponential of the Shannon entropy of the eigenvalues of a
similarity matrix, enabling it to measure the effective number of unique elements in a sample. The
Vendi Score, though effective for evaluating diversity in static datasets, is not well-suited for time
series data due to several key reasons. Time series data inherently involves temporal dependencies
where the order and timing of data points are critical, which the Vendi Score’s similarity measures do
not account for. Additionally, time series data often exhibit trends, seasonality, and non-stationary
behavior, which contradict the Vendi Score’s assumption of data points being independently and
identically distributed. Lastly, the dynamic and evolving nature of time series data, where patterns
can change over time, is not captured by the Vendi Score’s static similarity matrix.

In order to compromise for these challenges, we introduce two diversity scores. Local diversity and
Global diversity.

4.1 Local Diversity

Let {G1, . . . , GN} be the graphs extracted from the time series dataset with NVg. For each graph
Gi, we have a set of nodes {v1, . . . , vM}. Let x(vi) ∈ R denote the node attribute. To embed the
nodes, we utilize the Weisfeiler-Lehman (WL) scheme. The Weisfeiler-Lehman subtree kernel [6, 7]
examines similarities among subtree patterns through a propagation scheme that iteratively updates
node attributes based on their neighbors. We define the initial attribute x0(vi) = x(vi) for each node
vi. Let H be the number of WL iterations. For every h ∈ {0, . . . ,H} recursively, we define

xh+1(vi) =
1

2

xh(vi) +
1

deg(vi)

∑
u∈N (vi)

w((vi, u)) · xh(u)

 .

As the updating process for the WL. The WL features are defined as

Xh
G =

 xh(v1)
...

xh(vnG
)

 ,

where Xh
G is a column vector of node attributes at iteration h. The final node embeddings of graph G

at iteration H are defined as

XH
G := concatenate(X0

G, . . . , X
H−1
G ).

Based on [8], we define the Graph Wasserstein Distance (GWD) as follows:

Definition (Graph Wasserstein Distance). Given two graphs G = (V, E) and G′ = (V ′, E ′)
with respective node embeddings at iteration H , X = XH

G and X ′ = XH
G′ , we define the Graph

wasserstein distance (GWD) as

W (G,G′) := min
P∈Γ(X,X′)

⟨P,D⟩.

Here, D is the distance matrix containing the distances d(x, x′) = ∥x−x′∥2 between each element x
of X and x′ of X ′, P ∈ Γ is a transport matrix, and ⟨·, ·⟩ is the Frobenius dot product. The transport
matrix P contains the fractions that indicate how to transport the values from X to X ′ with the
minimal total transport effort.

We now define the local diversity kernel kl for a pair of graphs G = (V, E) and G′ = (V ′, E ′) as

kl(G,G′) = e−βW (G,G′).

Where β is a hyperparameter. Given the graph set G = {G1, . . . , GN} extracted from the time series
dataset T , we compute the local similarity matrix Sl ∈ RN×N as

Sl
i,j = kl(Gi, Gj).
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4.2 Global Diversity

While the local diversity measure can capture the diversity and patterns within the graph
sets—effectively dealing with the intricacies of the graphs themselves—the global diversity measure
calculates the diversity based solely on the inherent characteristics of the time series data points. This
global approach provides a comprehensive diversity measure that is robust to local variations and
noise within individual time series. By focusing on the overall structure and distribution of the data
points across the entire dataset, the global diversity measure can identify broad patterns and trends
that may be overlooked by local measures.

To compute the similarity between time series points T = {t(1), ..., t(N)}, we utilize the Gaussian
Radial Basis Function (RBF) kernel. The Gaussian RBF kernel examines the similarities among the
points through a Gaussian function. We define the kernel function as

kg(t(i), t(j)) = exp

(
−∥t(i)− t(j)∥2

2σ2

)
,

where σ is the bandwidth parameter that controls the width of the Gaussian function.

Given the time series T = {t(1), ..., t(N)}, we compute the global similarity matrix Sg ∈ RN×N as

Sg
i,j = kg(t(i), t(j)).

4.3 True Diversity

So far, we have calculated the local and global similarity matrices but how can we use them in order
to calculate the diversity of a time series dataset? Inspired by ecology, diversity is often defined
as the exponential entropy of a species distribution, a concept that captures the variety within a
population and decreases as the distribution becomes less uniform [2, 4]. Vendi score [1] extended
the idea to machine learning by solely considering samples and defining diversity as the exponential
of the Shannon entropy of a similarity matrix over the samples. Therefore we define true diversity as
follows:

Definition (True Diversity). Let {λl
1, . . . , λ

l
N} be the eigenvalues of Sl/N ∈ RN×N and

{λg
1, . . . , λ

g
N} be the eigenvalues of Sg/N ∈ RN×N . True Diversity (D) for time series T is

defined as the convex combination of the exponential of the Shannon entropy of both eigenvalues
from global and local similarity matrix

D(T ) = α exp

(
−

n∑
i=1

λl
i log λ

l
i

)
+ (1− α) exp

(
−

n∑
i=1

λg
i log λ

g
i

)
.

Where α is a hyperparameter.

5 Relevance

To determine the relevance between two time series, we must first define what it means for two time
series to be relevant. Previously, we assessed diversity using graphical representations of the time
series data. Thus, it is necessary to find a solution within the space of graphs to unify the concepts
of diversity and relevance. We define relevance as the amount of structural difference between two
graph sets extracted with NVg from time series datasets. It is important to note that we are dealing
with sets of graphs rather than individual graphs. To proceed, we treat each graph G ∈ G as generated
by a random graph model. Therefore, we are interested in quantifying the difference between two
random graphs.

The entropy of a random graph provides a measure of the randomness in its structure, making it
suitable for this purpose. Entropy captures the complexity and variability within the graph’s structure,
reflecting how predictable or unpredictable the graph is. By comparing the entropies of two random
graphs, we can assess the differences in their structural complexities. This approach leverages the
probabilistic nature of random graphs and the comprehensive structural information encapsulated in

6



the graph’s spectral properties. Let g be a random graph with spectral density ρ. The spectral entropy
of g is defined as

H(ρ) = −
∫ +∞

−∞
ρ(λ) log ρ(λ) dλ.

Calculating H(ρ) explicitly is often infeasible, so we will approximate it. For a given graph set
G = {G1, G2, . . . , GN} with N nodes, for each Gj , 1 ≤ j ≤ N , we apply a density function
estimator based on the Gaussian kernel in order to estimate the spectral density. Given a graph Gj

and its spectrum {λ(j)
1 , λ

(j)
2 , . . . , λ

(j)
n }, each eigenvalue λi contributes to estimate the function in a

point λ according to the difference between λi and λ. That contribution is weighted by the kernel
(K) function and depends on a parameter known as bandwidth (h), which controls the size of the
neighborhood around λ. Formally, the density function estimator at a point λ is

f̂(λ) =
1

n

n∑
i=1

K

(
λ− λi

h

)
,

where
K(u) =

1√
2π

e−
1
2u

2

.

To obtain an estimator for the random graph, we apply the procedure described above for each
observed graph {G1, G2, . . . , GN} and then take the average among all the estimators.

Now that we have estimated the spectral entropy of the random graphs, we return to our main question:
how do we compare two graph sets G1 and G2? We begin by treating each graph set as a random
graph, denoted g1 and g2, respectively. Next, we estimate their spectral densities ρ1 and ρ2 using the
previously mentioned procedure. Before defining relevance, we have to define the Kullback–Leibler
(KL) divergence for the random graphs. Let g1 and g2 be two random graphs with spectral densities
ρ1 and ρ2, respectively. The KL divergence is defined as follows. If the support of ρ2 contains the
support of ρ1, then the KL divergence between ρ1 and ρ2 is

KL(ρ1∥ρ2) =
∫ +∞

−∞
ρ1(λ) log

ρ1(λ)

ρ2(λ)
dλ,

We define relevance as follows:

Definition (Relevance). Let ρ1 and ρ2 be the spectral densities estimated from the graph sets G1 and
G2 which derived from time series datasets T1 and T2. We define relevance as the Jensen–Shannon
divergence between two spectral densities

R(T1, T2) =
1

2
KL(ρ1∥ρM ) +

1

2
KL(ρ2∥ρM ),

where ρM = 1
2 (ρ1 + ρ2).

The Jensen–Shannon divergence can be interpreted as a measure of the structural differences between
two random graphs, quantifying their relevance.

6 Experiments

Our experimental evaluation focuses on three key aspects of our work: (i) We demonstrate that our
introduced metric relevance effectively discriminates between time series datasets from different
contexts, capturing the essence of relevance. This evaluation validates the metric’s ability to quantify
the pertinence of datasets to specific tasks or domains. (ii) We assess the efficacy of our proposed
diversity metric across various synthetic and real-world settings. This analysis showcases how the
metric captures and quantifies the diversity within and between datasets, providing insights into
dataset composition and potential information gain. (iii) We test our approach in practical scenarios
involving multiple datasets offered to a buyer who has already trained a model with an existing
dataset. This experiment simulates a marketplace where the buyer seeks the optimal complementary
dataset from various sellers. We evaluate how well our metrics guide the selection of datasets that
best augment the buyer’s existing data, leading to improved model performance.
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