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Abstract
Blockchains today amass terabytes of transaction data that demand efficient and insightful real-time analytics for applica-
tions such as smart contract hack detection, arbitrage on decentralized exchanges, or trending token analysis. Conventional
blockchain nodes, constrained by RPC APIs, and specialized ETL-based blockchain analytics systems grapple with a trade-
off between materializing pre-calculated query results and analytical expressiveness. In response, we introduce AlterEgo,
a blockchain node architected specifically for analytics that maintains parity with traditional nodes in ingesting consensus-
producedblockswhile integratinga robust analyticsAPI.Ourprototype supports efficient transactional andanalytical process-
ing while circumventing the rigidity of ETL workflows, offering a better trust model, and achieving significant performance
improvements over the state-of-the-art.
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1. Introduction
Decentralized Ledger Technology (DLT) is rapidly gain-
ing traction across various industries. As of December
2023, Ethereum, one of the leading blockchains, contains
over one terabyte of transaction data, growing at a rate of
1million transactionsperday [1]. Asa result, theneed for
efficient and low-latency blockchain analytics systems
has become increasingly paramount. While adept at han-
dling transactional data, traditional blockchain nodes fail
to provide comprehensive analytics capabilities. These
nodes typically offer Remote Procedure Call (RPC) APIs,
allowing clients to access detailed information about
transactions, states, and events. However, these APIs
cannot handle complex queries essential for in-depth an-
alytics, such as filters, joins, and aggregation.

The prevailing approach in blockchain analytics
involves executing Extract, Transform, and Load (ETL)
processes from a blockchain node. This paradigm first
entails extracting fine-grained information from the
blockchain node and processing the data in external an-
alytics systems, which presents several challenges. First,
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it demands extensive resources to extract and store the
data. Secondly, it introduces considerable latency in data
updates. It also creates a dependency on the blockchain
node serving the raw data as a single source of truth. Fi-
nally, it requires knowing the specific data to be queried
in advance, making it impossible to respond to unex-
pected queries without initiating another ETL process to
collect the missing data. Overall, these issues contribute
to system inefficiency and suboptimal user experience.

This paper proposes a novel blockchain analytics solu-
tion, AlterEgo, representing a radical shift from the cur-
rent ETL paradigm. AlterEgo is a blockchain node that
mirrors the functionality of a standard node but is inher-
ently designed to support analyticsworkloads. Itmaintains
a copy of the entire blockchain, functioning as an archive
node1, and directly ingests new blocks produced by the
consensus mechanism instead of extracting them from
a single blockchain node via RPC. Aside from adding an
analytics API, AlterEgo nodes are indistinguishable from
traditional nodes from the perspective of the blockchain
system: they can participate in consensus, relay trans-
actions, and validate blocks. As a result, AlterEgo
nodes provide additional redundancy and increase the
decentralization of the underlying blockchain. What
sets AlterEgo apart is its internal architecture, which re-
volves around a columnar-vectorized store that supports
analytical query workloads and fast data ingestion.

To validate our concept, we have developed a
prototype of AlterEgo and conducted a comprehensive
evaluation of its performance. We compare our approach
against traditional blockchain RPCs and the leading solu-
tion in blockchain analytics, TheGraphProtocol [2]. Our
findings demonstrate that AlterEgo significantly outper-
forms current solutions while supporting low-latency

1An archive node stores a copy of the blockchain since inception and
allows querying the state at any block height.
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data updates, more expressive querying capabilities, and
a superior trust model for data integrity and provenance.

This paper makes the following contributions:
• We introduce AlterEgo, a new kind of blockchain

node for analytics that integrates seamlessly into
existing blockchain environments.

• We present the design of AlterEgo and highlight its
advantages over the state-of-the-art.

• We implement a prototype of AlterEgo and demon-
strate its significant performance improvements
and increased flexibility.

2. Background &Motivation
2.1. Blockchains & Smart Contracts
Blockchains have evolved from their original role as plat-
forms for simple transactional exchanges to becoming
complex ecosystems supporting smart contracts with
intricate states and interactions. Smart contracts are
written directly into code, residing on the blockchain,
and can interact with other contracts and user accounts.

In this paper, we focus on blockchains compatiblewith
the EthereumVirtual Machine (EVM), e.g., Ethereum [3],
Polygon [4], and Arbitrum [5], but our ideas broadly ex-
tend to other systems. Transactions in EVM blockchains
execute smart contracts. When a smart contract runs,
it can emit events logged within the blockchain. These
events are crucial for tracking the activity of smart con-
tracts and state changes. Furthermore, each transaction
generates a receipt, which provides essential details
about the transaction, including its status, the gas used
for its execution, and the logs of emitted events.

The complexity and richness of blockchain interac-
tions require advanced analytics to understand, monitor,
and optimize the performance and security of blockchain
applications and facilitate decision-making.

2.2. Blockchain Analytics
Blockchains are fundamentally designed to support
online transaction processing (OLTP) and, therefore, re-
quire integrating online analytics processing (OLAP) for
effective analytics. Unsurprisingly, current blockchain
analytics systems revolve around ETL processes that
transfer blockchain data to an off-chain data manage-
ment system for further processing. EtherQL [6] is a
query infrastructure for Ethereum, offering a RESTful
API that supports range and limit queries. Blockchain
ETL [7] provides a collection of public datasets in rela-
tional format stored inGoogleBigQuery [8]. BlockSci [9]
is an in-memory blockchain analytics database capable
of importing data from multiple blockchains that offers
a domain-specific language (DSL) for specifying graph
queries. The Graph Protocol [2] is a commercial solution
that lets programmers select a subset of the blockchain
data to extract and query using a GraphQL interface.

However, while these systems provide efficient offline
blockchain analytics, they face inherent limitations in
real-time data analytics. Specifically, the ETL process
introduces synchronization delays and requires trusting
the blockchain nodes that provide the original data, rais-
ing concerns about the data’s integrity and provenance.

2.3. An Integrated Blockchain Node
This paper advocates for a different approach to
blockchain analytics that addresses the inherent limita-
tions of current systems. The primary issuewith existing
solutions lies in using an explicit ETL process between
two separate systems, creating a disconnect between
them. Instead, we propose a unified system paralleling
the Hybrid Transaction Analytics Processing (HTAP)
architecture, which combines blockchain and analytics
functionalities into a single system. This integrated ap-
proach removes synchronization challenges and enables
low update latency while reducing trust assumptions by
sourcing transactions directly from the consensus layer.

3. Design & Implementation
In this section, we describe the system design and
implementation details of AlterEgo. AlterEgo focuses
on achieving two primary goals: low-latency synchro-
nization of blockchain data to enable real-time analytics
and efficient and expressive data analytics supporting
arbitrary queries on any data stored in the node.
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Figure 1: High-level architecture of an AlterEgo node.
The architecture of AlterEgo, shown in Figure 1,

follows from these design goals. The system ingests
blocks, validates and replays transactions, and inserts the
corresponding data into an analytics store that exposes
a dedicated analytics API in addition to the standard
JSON RPCAPIs. In the rest of the section, we present the
two main components of AlterEgo in more detail before
discussing its implementation.

3.1. Ingestion Engine
AlterEgo receives blocks directly from the blockchain’s
consensus layer as it runs a complete blockchain node.
Each block contains a set of transactions representing
state changeswithin the blockchain, fromvalue transfers
to smart contract invocations. The contents of each
block are verified and agreed upon by the network
participants, providing data integrity.

Upon receipt of a block, the system proceeds, much
like a conventional blockchain node, with the validation
and state replaying of each transaction. Validation en-
sures that each transaction adheres to the network rules
and does not violate any invariants, such as preventing



double-spending. State replaying entails executing
transactions to generate event logs and compute the new
state of the blockchain. AlterEgo performs this replay
in parallel for efficiency by determining the serialization
order of conflicting transactions whenever possible.

Finally, AlterEgo stores the block and transaction
metadata, the event logs, and the state changes in its
embedded analytics database. Blocks and transactions
can be batched together for efficient insertion. Al-
terEgo dynamically adjusts the batch size to balance
performance and data freshness.

3.2. Analytical Engine
The analytical engine utilizes a columnar-vectorized
store focused on efficient data retrieval to handle the
vast and growing datasets in blockchain environments.
Table 1 shows the schema for the central table. The en-
gine indexes and stores all the contents of the blockchain,
akin to the functioning of an archive node, enabling
arbitrary analytics involving any smart contract or state
within the blockchain.

Column Data Type Description
log_id BIGINT Log identifier
block_num BIGINT Block number (sequential)
contract CHAR(40) Contract address
signature CHAR(64) Event siganture
block_ts TIMESTAMP Block timestamp
from_addr CHAR(40) Sender address
to_addr CHAR(40) Receiver address
data BLOB Data field

Table 1
Central table’s schema. log_id is the primary key. We add
indexes on all fields except data.

AlterEgo’s analytics API is based on SQL, enabling
users to execute complex queries with familiar SQL
syntax. In addition to standard SQL, we support window
functions and common table expressions to enhance data
analysis capabilities and facilitate working with time, an
important requirement for blockchain analytics.

3.3. Implementation
We chose the official Ethereum node implementation
in Golang, known as Geth [10], as the foundation for
AlterEgo for prototyping efficiency, modifying ∼270
lines of code. This decision enabled us to focus on
specific enhancements, namely integrating our analytics
storage engine and adding support for the analytics
API, while relying on Geth’s efficient transaction vali-
dation and state updates. While our prototype utilizes
Geth, our approach can support other EVM-compatible
blockchains with minimal adjustments. The analytical
component of AlterEgo is based on DuckDB [11], an
embeddedOLAPdatabase that alignswellwith the needs
of our systemwhile providing satisfactory performance.

4. Evaluation
In this section, we conduct an evaluation of AlterEgo
using several representative query benchmarks executed
over the Ethereum blockchain. We focus on providing
answers to the following research questions.
RQ1: How does the performance of AlterEgo compare

with traditional RPC-based analytics and state-
of-the-art solutions such as The Graph Protocol?

RQ2: How fast can AlterEgo apply updates?
RQ3: How expressive is AlterEgo when compared

with existing solutions?

4.1. Experimental Setup
Benchmarks Weconsider four representative queries:
Q1: Count the number of transfers of an ERC202

token (USDT) over a given period.
Q2: List the k most active addresses of an ERC20

token (USDT) over a given period.
Q3: List the k addresses with the largest balance of

an ERC20 token (USDT) at any given time.
Q4: Calculate the total trading volume of a trading

pair (USDT-ETH) on a decentralized exchange
(Uniswap v2).

Baselines We compare with the following baselines:
• Golang+RPC: Collect the data necessary from the

query from a local Ethereum blockchain node (Geth
version 1.12.1) using JSON-RPC and process it in
golang (version 1.21.3). For each query, we execute
eth_getLogs iteratively on successive block ranges
with the appropriate event filter on the relevant
smart contract(s) to extract the necessary data
before processing it in a custom golang program.

• The Graph: Execute the query in The Graph Pro-
tocol’s GraphQL query format. We run a dedicated
subgraph for each query inside a local The Graph
deployment (version 0.33.0) synchronized with a
local Ethereum node (Geth version 1.12.1).

Configuration We perform all experiments on a
server equipped with four Intel(R) Xeon(R) E7-8857 v2
CPUs with a total of 48 cores and 1.5 TB DRAM, running
Debian with Linux kernel version 5.15.130.1.amd64-smp.

4.2. Overall Performance Comparison
We begin with a performance comparison of AlterEgo
with Golang+RPC and The Graph on each of the four
queries (Q1-4) for different time ranges from 1k blocks
to 100k blocks, as shown in Figure 2. To complete
the comparison, we also include a version of AlterEgo
where the query results are materialized (AlterEgoMat)
similarly to The Graph. Each block range starts from the
10,000,000th Ethereum block.

The results show that using Golang+RPC for complex
queries across extensive block ranges is impractical due

2ERC20 is the standard for fungible tokens on Ethereum.
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Figure 2: Comparison of query latency for the different systems. Note that the y-axis is in logscale for plot readability.

to the round-trip overheads and excessive intermediate
data. In contrast, AlterEgo consistently delivers fast
responses of under 2 seconds to all queries and shows
better scalability as the query range expands. The Graph
excels in handling these predefined queries, achieving
impressive performance by pre-computing all results.
Finally, AlterEgoMat, which adopts a similar strategy
of materializing query results, achieves response times
of ∼1 ms, surpassing The Graph. Overall, the results
underscore AlterEgo’s efficiency and indicate a potential
to optimize performance for known queries.

4.3. Update Latency
Next, we consider the data update latency (or analytical
latency), i.e., the time between the receipt of a transac-
tion and the point at which the new data is available for
queries of the different systems. We use different batch
sizes by grouping blocks and applying them together to
update the state of the analytics system. Table 2 com-
pares the average per-block update latency for AlterEgo
and The Graph across various batch sizes. Notably,
The Graph’s functionality is confined to indexing a
single smart contract. To establish a comparison under
equivalent conditions, we present data for a similar
workload in AlterEgo, referred to as ’AlterEgo Single,’
which contrasts with ’AlterEgo Full,’ which indexes the
entire blockchain. We perform this experiment starting
from the 10,000,000th Ethereum block.

Batch Size AlterEgo Full AlterEgo Single The Graph
1 91.70 ms 14.49 ms 31.16 ms

10 71.30 ms 12.64 ms 28.18 ms
100 66.85 ms 11.01 ms 30.87 ms

1,000 65.30 ms 10.73 ms 31.17 ms
10,000 64.00 ms 10.61 ms 31.20 ms

Table 2
AverageUpdateLatency (inmilliseconds) forAlterEgoandThe
Graph with Different Batch Sizes (number of blocks).

AlterEgo Single ingests new blocks up to 3× faster
than The Graph. Despite the increased workload
undertaken by processing entire blocks, AlterEgo Full
applies updates in a timeframe of only 2-3× longer than
The Graph. These findings underscore the practicality
of ingesting whole blocks within a 100-ms window,
given that this time frame is shorter than the network
propagation delay for blocks on public blockchains. We

conclude that AlterEgo can maintain low update latency,
even when processing data on a block-by-block basis.

4.4. Expressiveness
AlterEgo, RPC nodes, and The Graph present distinct
paradigms influencing their expressiveness. AlterEgo
employs a schema-based query model akin to traditional
blockchain nodes, offering flexibility to formulate
queries across various parameters and supporting ad hoc
querying for evolving analytical needs. The queries in
§4.1 are readily expressible in AlterEgo and benefit from
its efficient execution. In contrast, while sharing some
of this expressive capacity, traditional RPC nodes incur
a significant efficiency trade-off due to their inability to
perform advanced filtering and aggregation. They also
do not operate on timestamps but on block numbers,
requiring cumbersome back-and-forth translation.
Finally, The Graph utilizes a fixed computational model
that materializes the results of predefined queries, which
confines its query potential to the bounds of anticipated
queries and limits exploratory and real-time analysis.
For instance, accommodating the queries from §4.1 re-
quires extensive pre-calculation for all block heights (i.e.,
timestamps), resulting in increased storagedemands, per-
formance overhead, and restrictions on data granularity.

5. Conclusions and FutureWork
We introduced AlterEgo, a specialized blockchain node
with advanced analytics capabilities that maintains the
core functionalities of traditional blockchain nodes,
offering substantial performance improvements, better
user experience, and higher trustworthiness than the
state-of-the-art. We plan to open-source AlterEgo upon
publication of this article.

The encouraging outcomes from this initial prototype
motivate the exploration of further research avenues.
One key direction is reducing the load on a single node
for long-running queries by distributing the execution
acrossmultipleAlterEgonodes. Another research oppor-
tunity involves directly integrating pattern tracking and
anomaly detection within the node to enhance its real-
time analytics capabilities. A third area for futurework is
connecting analytics nodes for different blockchains or
non-blockchain systems toanalyze their interactions. All
in all, our ultimate objective is the design of a comprehen-
sive framework for decentralized blockchain analytics.
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